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OFF-DESIGN SOLUTIONS OF HYPERSONIC FLOWS PAST ELLIPTIC-
CONE DERIVED WAVERIDERS

Bok-hyun Yoon

(Received July 5, 1992)

A comprehensive study for the inviscid numerical calculation on the hypersonic flows past a class of elliptic-cone derived
waveriders at both on-design and off-design conditions has been accomplished by the author. The portion of the on-design solutions
has been reported already. In this paper, numerical results for the hypersonic flows at various off-design conditions are presented
and their flowfield characteristics are analyzed as well. At Mach numbers greater than the design condition, a lambda-shock
configuration develops near the tip of the compression surface. At negative angles of attack, other complicated shock patterns
occur near the leading-edge tip. These heretofore unknown flow patterns show the power and utility of CFD for investigating novel

hypersonic configurations such as waveriders.
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a . Angle of attack
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y . Ratio of specific heats
& : Azimuthal angle
é : Conical angle
o0 . Density
& ¢ . Generalized curvilinear coordinates
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- Exponential of P and Q source terms of Pois-

: Components of P and Q source terms of Pois-

7, 8, ¢ . Spherical coordinates
1. INTRODUCTION

As the study for hypersonic vehicles progresses in the
aerospace science field, the waverider has been highlighted
with deep concern for recent years. In order to consider any
practical use of the waverider such as the forebody of an
aerospace plane, it is important that its off-design perfor-
mance should be well understood. The underlying concept of
waverider is that the on-design conditons are easy to calcu-
late. On the other hand, the off-design conditions, at which we
expect quite complicated flow patterns, are neither well
understood nor fully analyzed in detail. Under the circum-
stances, the study of hypersonic flows past waverider at
off-design conditions is a quite challenging task.

For the analysis of the problem three approaches may be
taken into consideration. Firstly, the study for the off-design
conditions by means of analytical approach is nearly impos-
sible at this point. This method has been limited to on-design
conditions only. Accordingly, for that purpose experimental
approach (Rasmussen, Jischke, Daniel, 1982, Jischke, Ras-
mussen, Daniel, 1983) had played a major role. Its drawback
is high cost to run a hypersonic wind tunnel and to access or
purchase such high-priced facilities for experiment. Besides,
it would be another problem to set up high altitude atmo-
spheric conditions at which space-crafts are supposed to fly.

As in other research fields, numerical analysis becomes a
more powerful tool in the fluid dynamics area too. Neverthe-
less, researches on hypersonic flows past waveriders by
numerical analysis have been very rare up to now, possibly
because of the intrinsic geometrical and physical singularities
of the waverider problem. Jones(Jones, 1986) used the full
potential method for numerical calculation for the first time
to solve supersonic flows past waveriders. However, his
results are neither accurate nor adequate for high supersonic
flow regime because of his simplified equations. For example,
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the inaccuracy increases, as the angle of attack becomes
larger, which indicates more hypersonic flow feature at such
off-design conditions. In short, his analysis is not meaningful
in hypersonic flow regions. Recently, some papers (Long,
1990, Jones, Dougherty, 1990, Lia, Issac, Miles, 1990) by CFD
(Computational Fluid Dynamics) method were published,
just as the author’s comprehensive numerical study for the
waverider flowfields was completed, as mentioned in the
previous report(Yoon, 1992). One paper is limited to a nar-
row range of off-design conditions and the other paper calcu-
lates for small off-design data points. As an instance, Long’s
paper (Long, 1990) reports only two off-design data points
for the lift to drag ratio with 29 x 25 mesh. These are obvious-
ly insufficient for checking both the accuracy and the trend,
and also for plotting a graph. Furthermore, none of them
deals with the detailed flow patterns such as the shock struc-
ture near the leading edge and an imbedded shock arising
from the different angle of attack from the designed value.

In this investigation, we deal with the extensive range of
off-design conditions with typical grid 83 x 41 mesh. That is,
the freestream Mach number ranges 3 to 10 and the angle of
attack ranges —12° to +10°. This does mean more than the
simple extension of the off-design range. This implies that
various obstacles for numerical convergence, which is the
main difficulty in this problem, were removed to such an
extent. This may be confirmed from Jones’ report (Jones,
Dougherty, 1990) that the PNS code, that was the very code
on which this research was done successfully, breaks down
for bodies with sharp leading edges like waveriders. The aim
of this paper is to analyze some hypersonic flow characteris-
tics at various off-design conditions, some of which are
neither observed nor analyzed heretofore. These include the
lambda-shock near the leading edge of the investigated
waverider, other complicated shock strcutures, and flowfield
comparisons with the freestream Mach number and/or angle
of attack varying as parameters.

2. PROBLEM FEATURES IN NUMERICAL
ANALYSIS

The numerical calculation of flows past waverideors
involves difficulties that fall into at least three categories
which are somewhat interrelated. The first category is as-
sociated with the singular nature of the waverider shape at
the sharp leading edge. The second category is associated
with the large gradients in the flow arising from the bow
shock wave, the large gradients near the sharp leading edge
especially when the freestream Mach number is slightly less
than the design Mach number, and possibly large gradients
arising from vortical layers. The third category is the numeri-
cal algorithm itself, including the implementation of the wall
boundary condition.

The upper surface of the elliptic-cone derived waverider is
a flat delta-shaped surface that intersects the lower curved
compression surface along a straight line that forms the
sharp leading edge of the waverider. The singular behavior of
this leading edge presents difficulties in constructing smo-
othly-varying grid cells near the leading edge. Some grid
construction schemes are tested . an O-type grid, a fan-type
grid, and an adaptive grid. If the grid is skewed to a certain
degree or if the grid cell volumes change very rapidly, the
numerical integration will results in divergence. An adaptive
grid may be used to improve the resolution and accuracy for

capturing shocks. This, however, would yield grid skewness
for both the sharp leading edge region and the bow shock
region. As a test case, an adaptive grid was used with the
hope for an improved shock structure, but it did not lead to a
successful converged solution. It should be noted here that a
very slightly skewed grid introduced by the adaptiveness
could be the source of divergence in an attempt to numeri-
cally integrate governing equations. This tells that the con-
vergence of the numerical integration is severely influenced
by the grid structure near the tip. Among various methods for
gird generation, an elliptic grid generation is adopted,
because it produces a very smooth gird. Although the overall
geometry of the waverider seems to be simple, a lot of effort
should be exerted to get a desirable gird structure especially
near the tip. For that purpose Roberts’ stretching (Anderson,
Tannehill, Pletcher, 1984), Sorenson’s method (Sorenson,
1980), and Anderson’s adaptive grid method (Anderson, 1987)
are adopted.

This paper deals with the flowfields at off-design condi-
tions which occur when either the freestream Mach number
or angle of attack is different from the related design value.
The effect of the second difficulty stated earlier will be
worse, as the Mach number and/or the angle of attack
increase, where the flow becomes more rotational and thus
exhibit more distinguished features of hypersonic flow with a
large number of hypersonic similarity parameter. Obviously
this would place restrictions on the magnitude of both Mach
number and the angle of attack for numerical calculations.

Numerous numerical algorithms and methods can be con-
sidered for numerical integration and discretizing the Euler
equations which are used in this study. In this investigation,
Lawrence’s STARS3D code based on his algorithm, which is
a steady version of Roe’s approximate Riemann solver (Roe,
1981) and is in the class of upwind schemes, is utilized to
solve the hypersonic flows past elliptic-cone waverders. The
upwind schemes can be classified into two categories ; Flux
Vector Splitting (FVS) (van Leer, 1982) and Flux Difference
Splitting (FDS). The FVS divides any flux into the positive
and negative parts first according to the sign of its relevant
eigenvalues and then discretizes them by using one-sided
differences. The FDS determines a flux difference for two
corresponding cell interfaces first and then discretizes the
flux difference according to the relevant eigenvalues.
Lawrence et al. (Lawrence, Tannehill and Chaussee, 1986)
applied a Total Variation Diminishing (TVD) (Yee, Harten,
1987, Harten, 1983) schemes of Chakravarthy et al. (Cha-
kravarthy, Osher, 1985, Chakravarthy, Szema, Goldberg,
Gorski and Osher, 1985) to the PNS equations to develop an
algorithm which is in the category of the FDS. The TVD
schemes have attracted much attention in the field of hyper-
sonic flows, since they have some desirable properties as-
sociated with the handling of discontinuities like a shock in
view of the stability and built-in dissipation. This algorithm
uses the Finite Volume Method(FVM) to discretize the
governing equations and an Alternating Directional Implicit
method to integrate in space. The FVM, which is acquiring
popularity recently over the conventional Finite Difference
Method, is reported to have some advantages for the prob-
lems with irregular boundaries. In order to calculate inviscid
flows, which were only possible for this problem with this
code, the option for an inviscid flow was used.
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3. GOVERNING EQUATIONS

The steady Euler equations which are hyperbolized, are
numerically integrated for the computation. In this section
governing equations with initial and boundary conditions for
the numerical integration are presented.

3.1 Governing Equations in Cartesian Coordinates

The unsteady Euler equations without source terms can be
written in a strong conservation-law form in a Cartesian
coordinate system (x; : x, y, 2) as

aU oE’ EioB B~
T 2”9}:" -0 (E'1E,F, G) (1)
where
U={p, pu, ov, pw, E.}7
ou:
ousu+oup
Ei={puv+8:2p
ou:w+ 6ip
(Et+[)) Ui

E,:p[e+%(u2+ v+ uw? ]

where u, are Cartesian velocity components (z, v, w), e is
internal energy per unit mass, and ¢§;; denotes the Kronecker
delta function. For simplicity the ideal gas model is used here.

p=(r—1) pe= szT (2)

The above equation has been nondimensionalized by taking
the freestream values as reference parameters.

3.2 Governing Equations in Generalized Curvilinear
Coordinates

The Euler equations in a generalized curvilinear coordinate

system can be obtained through the following transformation

E=E(x,y,2), ('1&n 0.,i=1, 2, 3, (3)
where £(=£") is taken as the radial direction. The 5 (=£?) is
in the crosswise direction and & (=£°) is in the normal direc-
tion to the waverider body wall. These coordinates will be
generated numerically. The » and ¢ coordinates are orth-
ogonal at the body boundary but not for the leading edge
neighborhood and the rest of the flowfield. In case that the &
and 7 coordinates are taken to be fixed at the body wall, the
generalized coordinates are called to be body-fitted coordi-
nates. If we utilize the chain rule, the governing equations in
a new coordinate system can be expressed in the strong
conservation-law form again(Anderson, Tannehill, Pletcher,
1984),
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where [A] is defined by
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[Al=(2x ny 72
& & &

<

and the Jacobian J is defined by the determinant of [A] as
_i_fL_Q
=|Al|=
(x, v, 2)
From Eq. (6), we can see that all the information for the
fluxes of Cartesian coordinates and the flows of generalized
coordinates are exchanged by means of the metrics and the
Jacobian. It is to be noted here that the metrics appear in a
special form such that they are divided by the Jacobian. The
metrics in this form, as well as the Jacobian, have geometri-
cal meanings. The Jacobian is equal to the inverse of the cell
volume and the metrics combined with the Jacobian are area
element vectors. Thus, once an appropriate grid is generated,
both the metrics and the Jacobian can be determined from the
geometric configuration of the grid. Therefore, the explicit
form of the transformation function is not necessary at all.

3.3 Steady Hyperbolic Equations
In this study we use the steady Euler equations which are
obtained from Eq. (5). They are written as
oF | 4G
6; an ot =0 (7)
To numerically integrate the governing equations in space
they are to be of a hyperbolic type. The steady Euler equa-
tions become hyperbolic in the & direction, if we impose a
restriction such that the eigenvalues of the pertinent flux
Jacobian matrices (9F/9E, 8G/6E) are real (Warming,
Beam, Hyett, 1975). The restriction requires supersonic invis-
cid flow in the streamwise direction everywhere. Fortunately,
the waverider problem investigated here has such a charac-
teristic except for the case with a very high angle of attack.
That is, the flow speed past waveriders for a mild angle of
attack is expected to be supersonic in the streamwise direc-
tion for the whole flow region. However, this would not be
the case, if the angle of attack becomes such large that so
called stalling phenomenon occurs. Thus we can use the
steady equations which need space marching technique. In
this connection the £ coordinate in the steady equations plays
the role of the time variable in the unsteady equations.

3.4 Initial Conditions

To start the numerical integration of the Euler equations
by space marching, the initial flow values at a starting point
of & must be specified. Since the waverider has sharp leading
edges and there is no inviscid subsonic region for a mild angle
of attack, the supersonic freestream values can be used as
initial conditions(ICs) in the numerical integration of hyper-
bolized governing equations. Even though the final form of
the equations is expressed in the body-fitted coordinates to fit
the special geometry of the waverider, the imposition of ICs
for the velocity can be achieved by the utilization of the
Cartesian velocity components. It is to be noted Cartesian
components are still kept even in the equations expressed in
the body-fitted coordinates. The initial velocity components

are
k= Va cos @, vVii= Ve sin @, wk,:=0 (8)
If necessary, the effects of the angles of yaw g8 may be
implemented in this stage. For a special case without angles
of attack and yaw where the freestream flow is in the x
direction, the only nonvanishing velocity component is uk, =
V.. For the other flow variables such as pressure, density,
and temperature, we use freestream values. The initial
converged solution is sought at the position x=0.05,
where the step-back procedure is taken until we meet any
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given criterion. Since we deal with the inviscid problem only
and thus the flow is conical, we don’t need to integrate further
downstream. The reason for the above assertion is that even
for off-design conditions there is no characteristic length
scale, which is the basic feature of any conical flow, and thus
the flow remains still conical, since the body is conical.

3.5 Boundary Conditions

The boudnary conditions(BCs) without yaw (8=0) are
composed of three parts as shown in Fig. 1 the far-field away
from the bow shock, the upper and lower parts of the symme-
try plane, and the body wall. For the case with angle of yaw,
the symmetry condition cannot be used. In that case the
whole flow region must be included in the calculation instead
of the half domain with the periodic boundary condition.

Far-Field :

In a supersonic flow the flow downstream of a shock does
not influence the upstream flow. Thus we can use the frees-
tream values for the region which is far away from an
expected bow shock located around the lower portion of a
waverider. The outer boundary values (denoted by /...) are
set equal to those of the freestream as

Ulmax: Ufreestream (9)
When the angle of attack is such that an expansion wave
exists above the waverider, the far-field condition must be
imposed outside the Mach cone emanating from the apex of
the waverider.

Symmetry Plane :

The waverider configuration studied in this work is sym-
metric about the plane z=0 and the flow around it will be
also symmetric as long as its symmetry plane is aligned with
the freestream flow direction (#=0). To impose this condi-
tion two additional neighboring grid points are necessary
across both the upper and lower symmetry planes, since the

y
Far-field
Symmetry
Wall
e ( Physical Domain )
A
L Far-field
Symmetry
L Wall
L n

( Computational Domain )

Fig. 1 Boundary conditions

numerical algorithm used is the second order in the crosswise
directions. Let

(10)

I
co o o~
[
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then

Uk=1 :XUk=4, (7k=kmax+2:X(7k=kmax—l

Uk:ZZXUk:By Uh:kmax+l:XUk:kmax (11)
Here the —1 in X plays the role of changing the sign of w
across the symmetry plane.

Wall :

Since the finite-volume method is used, the wall surface is
composed of cell interfaces obtained by the primary grids.
Thus, fluxes instead of flow variables should be specified at
the wall for imposing the boundary condition. For inviscid
flow the contravariant velocity W in the ¢-direction is zero.
That is,

V=0, = WE%u%-—é’]lvﬁ-%w:O (12)

where

Y

n=T7¢ (13)
As a consequence, all the inviscid normal fluxes to the wall
vanish except for the pressure term.

4. GRID GENERATION

It is true that for general use there exist nice grid generat-
ing codes such as GRAPE(Sorenson, 1980) and EAGLE
(Thompson, Lijewski, Gatlin, 1989). However, for a special
problem as in the hypersonic waverider flow problem it
would be more desirable to write a special grid generating
code. The reason for that is that the elliptic-cone waverider
studied here has a geometrical singularity and thus we need
the capability of good grid control which eventually affect
the convergence of numerical calculations. In order to cap-
ture a bow shock more accurately we may utilize an adaptive
grid. To get a more desirable grid structure near the tip the
boundary points are redistributed by means of a stretching
function.

4.1 Elliptic Grid Generation
The set of equations for 2-D elliptic grid generation is

Q2o —2Bznc-+ y2ss= =73 (Pr+ Qzp) (14)
QYnr —2BYnc+ Y= -%(Pyﬂ* Qye) (15)
where
a=zttyt B=zzctyoye, r=25+y3 (16)
and the Jacobian J is defined as
_9( 0
J= 3z, 3) (17)

4.2 Control Functions

In determining control functions two factors are taken into
account. One is grid control near the wall and the other is an
adaptive grid. In this study the above two effects are com-
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bined together as

P=Py+Ps, Q=Quw+Qa (18)
where the subscript j stands for wall and 4 for adaptive. The
Py and Qy can be determined only by geometric constraints,
while P, and Q, are affected by flow solutions.

Gird Control near Wall :

To control the grid near the wall two constraints (Soren-
son, 1980) are imposed. They are orthogonality and the first
grid spacing from the wall

szc‘*'yvyt{wzo (19)

(2:2+ 33 V* = ds; =specified (20)
where 4p=4¢=1 as usual and 4, is the first grid spacing
from the wall. Except for 2, and y;; at the wall all the other
necessary derivatives can be determined if the inner wall
boundary are specified. The second derivatives in { are
approximated by using the one-sided differences which con-
tain previous iteration values. The source terms are assumed
to have following forms.

Pw(,0)=p(n1e®, Quw(nt)=q(p e (21)
The above constraints can decide the p(3), ¢(7), and the
parameters, ¢ and b, are specified. If a larger value of g or &
is used, the effect of constraints decays very quickly. On the
other hand it decays slowly for a smaller value. In solving
the set of equations, the Successive Line Over-Relaxation
(SLOR) method is utilized. Near the sharp corners, numeri-
cal instability may often occur. To remedy this problem,
various methods including under relaxation and mixed finite
difference schemes based on the sign of P and @ are used.

Adaptive Gird :

To improve the resolution in regions where rapid flow
variations occur and/or to reduce the global error, an
adaptive grid may be utilized. The basic idea of adaptive grid
which provides automatic adjustment to the flow pattern can
be obtained by equidistribution principle, which for 1-D case
can be expressed by

xaw=(dx) w=const (22)
This means simply that the mesh size is smaller when a
weight function w is large and vice versa. If we differentiate
it once with respect to » and compare with the Poisson
elliptic grid generating equation for 1-D, it can be easily seen

that the control function P is related to 1 9w The control

w o’

functions (Thomas, Middlecoff, 1980) are introduced by

Pi=(0+ 7D 6(n, ), Qu=(E+¢d(n, §) (23)
Anderson (Anderson, 1987) related these ¢ and ¢ to the
weight function w as

_low . 10w

In this study w is determined based on the pressure gradient
as

w=1+ A|VHI/|V plnax (25)
where A is a constant and the number 1 is introduced to avoid
infinite grid spacing in regions where the pressure gradient

vanishes. The pressure gradient in Eq. (25) can be obtained
by

9 (y:—gf,;——» yv—%)/@

0z
Op_(_,0 P

where Jg =i], Note that the pressure obtained by numerical

integration is defined at cell center points and thus it is
necessary to express it at primary grid points before calculat-
ing pressure gradients. If we use the weight function based on
the above definition directly, then the grid might become
rough. Thus, we adapt the following smoothing

i (k1) =-1%{4w(k,1) F2uw (kI +1) +2m (R +1, 1) +2w

(-1, D) +2wkl—1D+w(k—1, -1 +w
(=1, 1+ D) +we+1, I-D+w(k+1, [+1)}
27)
Since the source terms are defined by Eqgs. (21), (23), the
Poisson equations are set up as

atn=287u+ yia=—{[Frp(n e+ ap () | 7.

+['jlf(1(77) e ¥+ r«/i(rzyt)] f:} (28)

where #=1(z, y)7. The Eq. (28) is the final form which is
numerically solved to get a desired elliptic grid for a waver-
ider. So far we described only 2-D grid, while the porblem is
3-D. We can easily construct the desired 3-D gird through
contraction or expansion of the generated 2-D grid, since the
elliptic-cone waverider has a conical shape. Since the &=
constant plane is perpendicular to the x-axis, for the grid
constructed here we have

§y=6:~0 (29)

4.3 Redistribution of Boundary Points

The inner and outer boundary points around the tip are
redistributed by using Roberts’ stretching (Anderson, Tanne-
hill, Pletcher, 1984) which is more desirable than an
exponential stretching, since for the region where the cluster-
ing is not wanted we can get more uniform stretching. The
are length S is defined by

(B+1) — (8= BEp+
S=
1+(ﬁ—ﬁf})"f

S (30)

where 0< <o and & =~§—1T1_ As B — 0, more clustered
max

grid near S=0 can be obtained. As 8 — oo, it becomes uni-
form. Based on the arc lengths we can get the clustered grid
as we like. This is done by redistributing the x and y coordi-
nates along the wall line by means of the interpolation
according to the calculated arc lengths.

5. DISCUSSIONS

Fig. 2 shows pressure contours normalized by the frees-
tream pressure of the waverider flow at M.=3 with no
incidence. It can be seen clearly that the shock stands off
from the leading edge, which is different from the shock
position at the idealized on-design condition.

Figs. 3~6 show various plots for the waverider flowfield at
M.=10 with no incidence. In Fig. 3 the disturbed-velocity
distribution on the plane perpendicular to the x-axis is depict-
ed. The disturbance is limited to a small region below the
waverider, and a bow shock is captured very close to the
waverider compression surface. It should be noted that near
the tip region, a A-shock is developed. It can be seen more
distinctly by the stagnation pressure contours shown in Fig. 4.
A schematic diagram of the A-shock pattern is shown in Fig.
5. The oblique shock from the tip is quite strong, since the
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Fig. 2 Pressure contours

Fig. 3 Cross-plane velocity distribution

freestream Mach number is a quite large value of 10. Fig. 6
shows the wall pressure distribution. The rapid pressure jump
on the lower surface occurs across the Mach-stem portion of
the lambda shock that is normal to the surface. The upper
surface has the undisturbed freestream value.
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Fig. 5 Schematic diagram of lambda shock

Figs. 7, 8 show a couple of plots at various freestream
Mach numbers M.=3, 4, 4, 5, and 5 with the fixed angle of
attack ¢=0". Fig. 7 compares the pressure distribution in the
shock layer near the lower symmetry plane. It can be seen
that as M. increases, the shock strength increases and the
shock location moves toward the body.

Fig. 8 compares the wall pressure distributions. The wall
pressure for the upper waverider surface does not change so
much except for the case of the Mach number below the
on-design value. This implies that the upper freestream sur-
face remains undisturbed for the higher Mach numbers above
the on-design value. Especially at M.=4.5 the pressure varia-
tion near the tip resembles that of the Hypersonic Small
Disturbance Theory (HSDT) prediction and the waverider
upper surface has the freestream pressure. The wall pressure
for the lower compression surface increases as the Mach
number increases except for the leading edge region.



OFF-DESIGN SOLUTIONS OF HYPERSONIC FLOWS PAST --- 175

30.00

25.00

20.00

a
o
0
g -
&
< . Lower Surface
(=]
é-
o
o
o
Upper surface
g [reessocass &
o
o T T T T
0.00 0.30 0.60 0.90 1.20 1.50
z/xtané
Fig. 6 Wall pressure distribution
7
Mach=3.0, Alpha=0
el Mach=4.0, Alpha=0
~T~7""Mach=4.5, Alpha=0
" Mach=5.0, Alpha=0
5
$
= 4
3
2.
1

-23 -20 -17 -14 -1.1 -0.8
y/xtand

Fig. 7 Pressure near lower symmetry plane

Figs. 9, 10 are a couple of plots for the waverider flowfield
at M.=4 and ¢=+10°. The wall pressure is shown in Fig. 9.
We can see that the cross flow around the leading edge
affects the upper part of the waverider forcibly. In Fig. 10 the
azimuthal velocity shows a positive peak value which indi-
cates the accelerated cross flow at the leading edge. The
azimuthal velocity w, normalized by the freestream speed V.,
should be zero on the waverider upper surface. The w in the
figure shows the values for the half grid spacing off from the
wall. A small discontinuity is detected at =75, This corre-
sponds to the pressure-rise point near the upper waverider
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surface at z/x tan §=0.4 in Fig. 9,

Figs. 11, 12 are a couple of plots for the waverider flowfield
at M.=4 and ¢= —8". Fig. 11 shows the stagnation pressure
contours. We can see the development of the upper and lower
shocks. The shock below the waverider has a stronger
strength near the tip area, and it becomes weaker as it
approaches the lower symmetry plane. The shock above the
waverider is nearly attached at the tip and weakeus as it
approaches the upper symmetry plane. In Fig. 12 we can see
the two areas delineated by the difference between the upper
and lower wall pressures have approximately the same size.
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This implies that the lift is almost zero.

Figs. 13, 14 show the comparisons of the pressure distribu-
tions at various angles of attack o= -8, —4°, 0°, +3°, +10°
with freestream Mach number fixed at M.=4. Fig. 13 com-
pares the pressure distribution and shock locations near the
lower symmetry plane. It can be seen that as « increases, the
shock strength increases and the shock moves toward the
body. In this respect the effect of the increasing ¢ is similar
to that of the increasing M. as can be seen in Fig. 7. Fig. 14
compares the wall pressure distributions. For the negative
angles of attack the pressure lines for the lower waverider
surface intersect those for the upper waverider surface. The
areas of the left hand side of the intersection denote positive
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Fig. 13 Pressure near lower symmetry plane

lift and the areas of the right hand side denote negative lift.
This explains the lift decreasing at negative angles of attack.
At the positive angles of attack the pressure near the upper
symmetry plane becomes higher than that near the tip region,
because a weak imbedded shock develops on the upper sur-
face. We can also see the pressure near the lower symmetry
plane increase in comparison with the tip region, as «
increases. This is because the flow deflection near the symme-
try plane due to the high angle of attack is greater than the
flow deflection due to the perturbed elliptic cone near the
major axis, as « increases.
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6. CONCLUSIONS

The great importance for the CFD calculations is associat-
ed with the off-design results. At ¢=0" and for M.>4, the
bow shock fits more tightly under the waverider body. Near
the leadinge-edge of the waverider, a A-type shock configura-
tion appears to develop. This becomes more pronounced as
M. increases, the largest value being M.=10 in this study.
This is a new effect that was not known from previous
studies. The A-shock configuration occurs for other off-design
conditions also as part of the adjustment of the main conical
bow shock to the local leading-edge conditions.

For M.=3 and ¢=0", the bow shock stands off from the
body, the more so as M., decreases. There is then a flow in the
gap between the shock and the leading edge as the flow
adjusts to the higher pressure under the body to the lower
pressure on top.

When the angle of attack is positive («>0°) the shock
tends to fit tighter to the lower compression surface, and
there is an expansion region over the upper surface. A very
weak shock develops on the upper surface. This is needed to
deflect the flow that has expanded over the leading edge back
parallel to the vertical symmetry plane. For negative angles
of attack, the shock below the body weakens and a bow
shock develops over the upper surface of the body.

ACKNOWLEDGMENT

This work was supported by NASA Langley Grant No.
NAG-1-886. The author really appreciate the support.

REFERENCES

Anderson, D.A., 1987, “Equidistribution Schemes, Poisson

Generators, and Adaptive Grids,” Applied Mathematics and
Computation, Vol.24, pp. 211~227.

Anderosn, D.A., Tannehill, J.C. and Pletcher, R.H., 1984,
“Computational Fluid Mechanics and Heat Transfer,”
McGraw-Hill.

Chakravarthy, S.R. and Osher, S., 1985, “A New Class of
High Accuracy TVD Schemes for Hyperbolic Conservation
Laws,” AIAA Paper 85-0363.

Chakravarthy, S.R., Szema, K-Y., Goldberg, U.C., Gorski, J.
J. and Osher, S. 1985, “Application of a New Class of High
Accuracy TVD Schemes to the Navier-Stokes Equations,”
AIAA Paper 85-0165.

Harten, A., 1983, “High Resolution Schemes for Hyperbolic
Conservation Laws,” J. of Computational Physics, Vol.49, pp.
357 ~393.

Jischke, M.C., Rasmussen, M.L. and Daniel, D.C., 1983,
“Experimental Surface Pressures on Cone-Derived Waver-
iders for M.=3-5,” Journal of Spacecraft and Rockets, Vol.
20, No.6, pp. 539~ 545.

Jones, K.D. and Dougherty, F.C., 1990, “Computational
Simulation of Flows about Hypersonic Geometries with
Sharp Leading Edges,” AIAA Paper 90-3065-CP, 8th Applied
Aerodynamics Conference, Aug. 20~22, Portland, Oregon.

Jones, K.M., 1986, “Application of a Supersonic Full Poten-
tial Method for Analysis of Waverider Configurations,”
NASA Technical Paper 2608.

Lawrence, S.L., Tannehill, J.C. and Chaussee, D.S., 1986,
“An Upwind Algorithm for the Parabolized Navier-Stokes
Equations,” AIAA Paper and 86-1117.

Liao, J.R., Isaac, K. M. and Miles, J. B., 1990, “Navier-
Stokes Simulation of Waverider Flowfields,” AIAA Paper
90-3066-CP, 8th Applied Aerodynamics Conference, Aug. 20
~22, Portland, Oregon.

Long, L.N., 1990, “Off-Design Performance of Hypersonic
Waveriders,” J. of Aircraft, Vol.27, No.7.

Rasmussen, M.L., Jischke, M.C. and Daniel, D.C., 1982,
“Experimental Forces and Moments on Cone-Derived Waver-
iders for M.=3 to 5," Journal of Spacecraft and Rockets,
Vol.19, No.6, pp. 592~598.

Roe, P.L., 1981, “Approximate Riemann Solvers, Parame-
ter Vectors, and Difference Schemes,” J. of Computational
Physics, Vol. 43, pp. 357~372.

Sorenson, R.L., 1980, “A Computer Program to Generate
Two-Dimensional Grids About Airfoils and Other Shapes by
the Use of Poisson’s Equation,” NASA TM-81198.

Thomas, P.D. and Middlecoff, J.F., 1980, “Direct Control of
the Grid Point Distribution in Meshes Generated by Elliptic
Equations,” AIAA ], Vol.18, No.6, pp. 652~656.

Thompson, J.F., Lijewski, L.E. and Gatlin, B., 1989, “Effi-
cient Application Techniques of the EAGLE Grid Code to
Complex Missile Configurations,” AIAA Paper 89-0361, 27th
Aerospace Sciences Meeting Jan, 9—12, Reno, Nevada.

van Leer, B., 1982, “Flux-Vector Splitting for the Euler
Equations,” Lecture Notes in physics, Vol.170, pp. 507~512.

Warming, R.F., Beam, RM. and Hyett, B.J., 1975,
“Diagonalization and Simultaneous Symmetrization of the
Gas-Dynamic Matrices,” Mathematics of Computation, Vol.
29, No. 132, pp. 1037 ~1045.

Yee, H.C. and Harten, A., 1987, “Implicit TVD Schemes for
Hyperbolic Conservation Laws in Curvilinear Coordinates,”
AIAA ], Vol.25, No. 2, pp. 266~274.

Yoon, B.H., 1992, “On-design Solutions of Hypersonic
Flows past Elliptic-Cone Derived Waveriders,” KSME Jour-
nal, Vol.6, No.1, pp. 24~30.



